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superlattice reflections due to the incident-beam 
rocking are useful for determining the phases of the 
structure factors of the surface layer. 

We proposed in a previous paper to image surface 
structures at atomic resolution based on a computer 
simulation (Takayanagi & Honjo, 1980). As seen from 
(5) and (6), we can obtain structure images at a special 
thickness of the bulk crystal, z = 1/Y, since the phases 
of the superlattice reflections depend on Fs'. It is very 
useful for phase determination to detect displacement 
of lattice fringes in high-resolution images obtained 
at crystal thicknesses of 1/4 and 1/2 of the extinction 
distance, from which we know the relative phase of 
Fs and Fs'. 

We propose, thus, combined use of diffraction 
and/or high-resolution microscopy for phase deter- 
mination of structure factors, in addition to kinemati- 
cal intensity analyses such as those previously done 
for the Si(111) 7 x 7  reconstructed surface (Takay- 
anagi, Tanishiro, M. Takahashi & S. Takahashi, 1985; 
Takayanagi, Tanishiro, S. Takahashi & M. Takahashi, 
1985). 

The present author expresses his sincere thanks to 
Dr K. Kambe for critical reading of the manuscript 
and discussions. 
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Abstract 

A Monte Carlo simulation of an ordering phase 
transition in the surface region of a f.c.c.-type AaB 
binary alloy is reported. The main emphasis of this 
simulation is the evaluation of short and long-range- 
order correlations near the surface which are used 
for calculating X-ray intensities under grazing- 
incident-angle conditions. These calculations suggest 
effective ways of conducting surface diffraction 
experiments on order-disorder phase transitions. The 
simulation results are also compared with available 
experimental data. 

I. Introduction 

The effect of  the surface when a system undergoes a 
bulk first-order phase transition has been studied 
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recently in much detail by various theoretical 
methods, including mean-field approximation 
(Lipowsky & Speth, 1983; Lipowsky, 1984), Landau 
free-energy expansion (Mejia-Lira, Benneman & 
Moran-Lopez, 1985), and cluster variation for semi- 
infinite systems (Sanchez & Moran-Lopez, 1985). The 
thick-film case was examined by use of a continu- 
ous Landau free-energy expansion (Lipowsky & 
Gompper, 1984; Sornette, 1985), and the thin-film 
case in the Bragg-Williams approximation (Sanchez, 
Mejia-Lira & Moran-Lopez, 1986). These calculations 
were carried out for both magnetic and binary alloy 
systems and focused on the order-parameter profiles 
in the vicinity of the phase transition. This previous 
work encouraged us to investigate surface effects on 
the order-disorder transition of A3B-type alloys by 
using Monte Carlo (MC) simulation methods. MC 
simulations of the bulk phase transition have been 
carried out in the past by Golosov & Dudka (1973) 
and by Polgreen (1985). More recently MC simula- 
tions of three-dimensional systems including surface 
effects (Gompper & Kroll, 1988) have emerged. 

© 1990 International Union of Crystallography 
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In recent years experiments have been reported on 
the surface ordering transition of binary alloys via 
low-energy electron scattering (LEED) (McRae & 
Malic, 1984) and spin-polarized electron scattering 
(SPLEED) (Jamison, Lind, Dunning & Watters, 1985; 
Alvarado, Campagna, Fattah & Uelhoff, 1987). In 
those experiments, the order parameter of the first 
layer was measured and compared with theoretical 
predictions. However, electron scattering experi- 
ments are limited to information on the topmost layer. 
Strong interactions between electron beams and the 
material probed give rise to multiple scattering events 
which are difficult to analyze. The newly developed 
grazing-incidence X-ray scattering technique (Eisen- 
berg & Marra, 1981; Als-Nielsen, 1986) has important 
advantages over electron scattering since it yields 
information on ordering effects in surface and subsur- 
face layers and is capable of providing information 
on both long-range- and short-range-order correla- 
tions which cannot be distinguished by electron scat- 
tering. Two independent grazing-incidence X-ray 
scattering experiments have been carried out so far 
on the order-disorder transition of the CuaAu (111) 
surface (Zhu, Feidenhans'l, Zabel, Als-Nielsen, Du, 
Flynn & Grey, 1988) and (100) surface (Dosch, 
Mailander, Lied, Peisl, Grey, Johnson & Krum- 
macher, 1988). From our MC results on the correla- 
tion function we have calculated X-ray intensities 
which will be compared with experimentally obtained 
intensities. 

Previous calculations showed that the phase transi- 
tion differs depending on the surface orientation. In 
this paper we only consider the (111) surface of 
CuaAu-type binary alloys. We will discuss the results 
of our MC simulation in terms of order-parameter 
profiles similar to the recent work by Gompper & 
Kroll (1988). In addition, we provide concentration 
and short-range-order-parameter profiles for tem- 
peratures both above and below the ordering tem- 
perature. We have also simulated the X-ray intensities 
expected for scattering under grazing-incident-angle 
conditions. 

II. Theroretical procedure 

1. The model and the Monte Carlo procedure 

CuaAu-type binary alloys in the ordered phase 
exhibit a face-centered-cubic structure with Cu atoms 
occupying face-centered sites (fl sites) and Au atoms 
sitting on the corners (a sites). If we consider only 
the nearest-neighbor interaction, we can write the 
Hamiltonian (de Fontaine, 1979) 

H =  - J  E S ,S j -  H E S~. (1) 
ij i 

Here Si are the pseudospin variables with values 
+1( -1)  if site i is occupied by atom A (or B). J =  
~( VAA + VBB -- 2 VAn), where VAA, VBB, VAn are the 

pairwise interaction potentials. The effective field is 
given by H=½(/XA--/XB), where /XA, /XB are the 
chemical potentials for each kind of atom. We note 
that the Hamiltonian in (1) is the Hamiltonian of a 
rigid lattice and does not take size effects into account. 
In the actual CuaAu system it is well known that size 
effects can be important for interpreting short-range- 
order parameters, which will be discussed further 
below (Schwartz & Cohen 1965; Chen, Comstock & 
Cohen, 1979). 

In the presence of a surface, we assume that the 
interaction between atoms differs from their bulk 
value J only in the case that both atoms are located 
in the surface layer. We denote the interaction 
between two nearest surface atoms as J1. Then, the 
Hamiltonian of a binary alloy system including a 
surface layer can be written as 

H=-JE SiSj-J1 E S~*Ss*-HE S , - H , E  S~., (2) 
(j i ' j *  i i* 

where H1 = ½(EA-EB), and EA, EB are the segrega- 
tion energies for each kind of atom. The sums i*, j* 
go only over the atoms in the surface layer. 

The MC simulation was carried out using 24 x 24 x 
30 lattice sites having a [111] orientation in the z 
direction. The calculation was performed in two steps. 
First, we used the Hamiltonian for the bulk (1) and 
applied periodic boundary conditions in all three 
directions to simulate the phase transition in the bulk. 
This was done for the following reasons: first, to 
compare our MC results with well established experi- 
mental data which provide a quality control of our 
simulation; and, secondly, to enable us later to dis- 
criminate between surface and bulk effects. Sub- 
sequently, using the Hamiltonian of (2) we applied 
periodic boundary conditions in the xy plane only, 
while leaving two free surfaces in the z direction. In 
both cases we started with initial conditions charac- 
terized by a completely ordered structure and used 
spin-exchange dynamics to bring the system to equili- 
brium (Binder, 1986). In the spin-exchange simula- 
tion the second term (1) is a constant and can be 
ignored. The system reached equilibrium after 30 to 
80 Monte Carlo steps depending on the temperature. 
All physical quantities were averaged over many 
Monte Carlo steps after the system reached equili- 
brium to ensure proper statistical averages. 

2. Order parameters 

The order parameter of the order-disorder phase 
transition in question is defined as 

rl = p~-- pCA = p~-- pg,  (3) 

where pO/(p~) are the probabilities of finding an atom 
I ( A  or B) on an a (or 3) site. 
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The order parameter is calculated in the following 
way: 

rl =((S),~- m)/ (1-  m), (4) 

where m = Y, Si /N = ½ is the total spin divided by the 
number of lattice sites. (S)~ is the average spin of the 
a site averaged over Monte Carlo steps after attaining 
equilibrium. 

In the presece of a surface, the order parameter 
becomes z dependent: 

rl(z)=p~,(z)--p~A(z)=p~(z)--p~(z), (5) 

and is defined for each layer by 

rl(z)=[(S)~,(z)-m(z)]/[1-m(z)].  (6) 

3. Bulk X-ray intensities 

In order to calculate X-ray intensities, additional 
information other than the order parameter is 
required. The differential scattering cross section for 
an X-ray scattered off a bulk crystal is (Warren, 1969) 

do ' /dO = Ao E (ffj)exp (iQR~j) 
q 

= Ao ~ (f)(fj)exp (iQRq) 
0 

+ Ao E((ff j )  - (f)(fj))exp (iQR U) 
q 

= AoS(Q), (7) 

where Q is the scattering vector with magnitude IQ = 
(47r/A)sin 0, and R 0 are postion vectors for the dis- 
tance between the atoms i and j. Ao collects all 
extrinsic factors including the classical electron radius 
and geometry factors. Later we evaluate only S(Q). 
The form factor f is equal to fa (or fs)  if site i is 
occupied by atom A (or B), and fA, fs  are the atomic 
form factors of the atoms A and B. f  can be expressed 
in terms of the pseudospin S~ as 

f =½(1 + S,)fA +½(1- S,)f~ 

=y+½f(s,-m), (8) 

where f = CAfA + CBfB is the averaged structure factor, 
CA and CB are the atomic concentrations, and f =  
fA--fB. Rewriting S(Q) with the definition of (8), we 
obtain 

S(Q) = lY.fexp (iQR,) +½Ef(S , -m)exp  (iQR,)[ 2. 
i i 

(9) 

The first term represents the intensity of the funda- 
mental reflections and the second term the superlat- 
tice reflections. In this discussion we have neglected 
thermal and static Debye-Waller factors as well as 
phonon diffuse scattering. 

Using a superlattice wave vector ~, with the 
property exp ( i x R ) = + 1 ( - 1 )  when R is at an a(fl) 

site, S'(Q) due to the ordering of A and B atoms can 
be written as 

S'(Q)  = ¼f21Y~ r/exp [ i(Q+x)Ri]l  2 
i 

+~f2y~g(R,,Rj)exp[i(Q+,r)Ru]. (10) 
0 

The first term in (10) is due to the long-range order 
and the second term is known as short-range-order 
(SRO) diffuse scattering expressed as the Fourier 
transform of the pair correlation function g ( R ,  Rj) = 
( S, Sj) - ( S,)( Sj). 

When the system is in the disordered state, sym- 
metry requires g ( R ,  Rj)= g (R i -R j ) .  Then we can 
simplify our expression in (10) by using Cowley's 
SRO parameters (Warren, 1969): 

t~ C(R)= l-p~,(R)/CA. 

However, the situation is more complicated when 
the order parameter is not zero. Nevertheless, using 
symmetry arguments, we can also simplify the calcu- 
lation in this case. In particular we can use 
g(Ri. ,Rj.)=g(R,,Rj),  if R , . = R , + T ,  and Rj .=  
Rj +T, where T is a lattice translation vector pointing 
from the origin of one unit cell to another. Further- 
more we only need to choose an arbitrary unit cell 
and calculate g (R ,  Rj) when R~ is within this unit 
cell. Each unit cell contains four atoms, which we 
will call Ai,  A2, A3 and B. 

We now define a new SRO parameter using the 
above symmetry condition 

aS(R) = (1/4CACB)g(Rs, Rs + R) 

=[1/(1-m2)]g(Rs, Rs+R), (11) 

where k = 1, 2, 3, 4 correspond to Rs = RA., RA2, RA3, 
Re in a unit cell. When the system is in the disordered 
state, the above parameters are equal to Cowley's 
SRO parameter aC(R): 

aS(R) = aC(R). (12) 

Above the phase-transition temperature Tc the 
diffuse scattering can be calculated using the newly 
defined short-range-order parameters, 

S ( Q ) s R o  = ~ ( ( f ~ ) -  (f)(f~))exp [ i (Q+ x)Rij] 
o 

= NCACBf2~ aS(Ri)exp[i(Q+,r)R,], (13) 

where aS(R,) take corresponding s values from 1 to 
4, when Ri = RA,, RA2, RA3, Re is in the unit cell. 

4. Surface X-ray intensities 

To calculate X-ray intensities under glancing-angle 
conditions as shown schematically in Fig. 1, we need 
to change the definition for the scattering vector Q 
in the equations above and to include [T(,p,)T(~ol)] 2 
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in Ao (Dietrich & Wagner, 1984; Dosch, 1987; Sinha, 
Sirota, Garoff & Stanley, 1988). Here ~o~ and ~of are 
the incident and outgoing angles of the X-ray beam, 
respectively. T(~0~) and T(~o/) are the transmission 
coefficients associated with angles ~o~ and ~oy. The new 
scattering vector is Q =  (q, K), where q is the two- 
dimensional projection of Ks -Ks  onto the xy plane, 
and Ki and Ks are the incident and scattered wave 
vectors respectively. K is the z component of the 
scattering vector defined by 

K = (2rr/A)[(sin 2 ~oy-2~-2i/3) '/2 

+ (sin 2 ~o, - 2 a  -2//3) ' /2].  

8 = 1 - n, where n is the refractive index for X-rays, 
and /3 is the photoelectric absorption coefficient, 
sin 2 ~o = 28 defines the critical angle ~0c for total exter- 
nal reflection. The imaginary part of K yields the 
inverse penetration depth for the X-ray beam: A = 
1/llm (K)I. In the following calculation, we assume 
that the X-ray wavelength is A = 1.5 It,  and that the 
alloy is Cu3Au.  Under these conditions S(Q) for the 
long- and short-range-order parts is 

S(Q)=¼(fAu-fcu) 2 

x [Y~ r/( z)exp [ i(q + ,r)r,]exp [ i( K + rz )z,]l 2 
f 

+ ~(fAu --fcu) 2 Y~ g(R,, Rj)exp [i(q + ~)r U ] 

xexp[i(K+rz)Z,]exp[--i(K*+rz)Zj], (14) 

where r = (Rx, Ry) is the two-dimensional projection 
of R in the xy plane. 

In order to compare with the bulk case, we also 
define a short-range-order parameter as a function of 
the layer position z below the surface, 

aS(R,z )=[1-m(z)2]- 'g(R~,Rs+R) .  (15) 

For the SRO diffuse scattering it follows that 

S(Q)sRo = c,~cn(fAu-fc,J2E a k ( R i ,  Z) 
q 

x exp [i(q+'t)rij]exp [ i(K + rz)Zi] 

x exp [--i(K* + %)Zj], (16) 

where aS(Ru, z) take corresponding s values from 1 
to 4, when R~ = RA,, RA2, Ra3, RB is in the unit cell. 

In calculating the X-ray intensity, we have assumed 
that the sample is semi-infinite in the z direction. For 
the first 15 layers we used the simulation results 
derived from the film case and we treated the deeper 

_, A[lil] 
~i ~ ' ~ _  - ~ . ~ 3 _  _ 

Fig. 1. Scattering geometry under grazing-incident-angle condi- 
tions. 

layers as bulk, which is proper for the temperature 
range considered here which is not too close to T*. 
When the temperature is very close to T*, finite size 
effects have to be taken into account. In that case one 
has to use more layers in the z direction than we have 
used here. 

III. Results and discussion 

1. Order parameters and concentration profiles 

In Fig. 2 the order parameter of the bulk system 
is shown. Our simulation reproduces a first-order- 
type phase transition at T* of 1.76(3) J/kff. 
This transition is in good qualitative agreement 
with experimental results of Keating & Warren 
(1951) for the bulk transition. In Table 1 we list the 
average short-range-order parameters, a (R)  = 
[ce l (R)+ce2(R)+a3(R)+a4(R)] /4 ,  defined above 
[see (11)], for different temperatures. In the disor- 
dered state they are identical to Cowley's short-range- 
order parameters, and agree qualitatively with the 
measurements of Cowley (1950) and Moss (1964). In 
the ordered state, we also find good qualitative agree- 
ment of our calculated SRO parameters with those 
experimentally obtained by Chipman (1956) and 
Schwartz & Cohen (1965). Fig. 3 shows the calculated 
X-ray diffuse scattering intensity for temperatures 
above T*, which also reproduces the main features 
of the experimental data (Cowley, 1950; Moss, 1964). 

Now we discuss results which include surface 
effects. In Fig. 4 order-parameter profiles are shown 
for three different ratios of the surface-to-bulk inter- 
action: J1/J = 0.5, 1.0, and 2.0. Since our lattice con- 
tains 30 layers with two surfaces, the layer n is 
equivalent to layer 30 - (n - 1). For the order param- 
eter we have taken the average of layer n and layer 
3 0 - ( n -  1). The temperature range considered here 
is not very close to T*, and is about 13 K away from 
T* in Cu3Au.  In this case, the 'surface region' is 

% 

0.5 

c3 

i i i r [ i i r i I f r i r I i i i ~ _  , =: : e , , i , 

0.5 I.O 1.5 2.0 2.5 :5.0 
kBT/J 

Fig. 2. Order parameter from the Monte Carlo simulation of a 
bulk A3B alloy. 
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Table 1. Short-range-order parameters for the simulation of the bulk phase transition 

i represents  the ith ne ighbor  a tom f rom an a tom at the origin. 

i T =  0-812T* T =  0-874T* T =  0-947T* T =  1"033 T* T =  1-136T* T =  1-263 T* T =  1-420T* 

1 -0"002 -0-005 -0.027 -0" 179 -0" 170 -0-157 -0" 145 
2 0-001 0.003 0"030 0"200 0" 176 0-143 0" 121 
3 0-000 0"000 0"001 0"027 0"029 0"031 0"025 
4 0"000 0"001 0"011 0"058 0"045 0"030 0"025 
5 0"000 0-000 -0-008 -0"066 -0"057 -0"043 -0"034 
6 0"000 0"000 0-002 -0"007 -0"013 -0-017 -0"012 
7 0"000 0"000 -0"001 -0"006 -0-004 -0"003 -0"003 
8 0"000 0-000 0"011 0"063 0"052 0-035 0.025 

limited to only a few layers and finite-size effects in 
~he z direction play no role. From this figure it appears 
that all layers exibit the same critical temperature 
independent of the interaction parameter. Clearly, 
7/(z) decreases at the surface and becomes rounded, 
i.e. second-order-like, with decreasing J~/J. These 
order-parameter profiles also agree with the mean- 
field results of Lipowsky & Speth (1983) and 
Lipowsky & Gompper  1984) which indicate that 
below T* disordered layers intervene between the 
vacuum and the bulk, and the number of disordered 
layers increases macroscopically as T approaches T*. 
In our simulation the disordering of the surface layers 
is inferred from their reduced order parameters and 
is most clearly seen in Fig. 4(a) with a ratio of 
J,/J=o.5. 

Fig. 5 shows the concentration profile for the A 
atom (Cu) as a function of the layer number n for 
three different values of J1/J, and for two different 
temperatures above and below T*. From this graph 
it can be seen that for Jl /J> 1 a dramatic increase 
of Cu atoms in the first layer occurs. Vice versa, 

& 

[,oo] [zoo] 

Fig. 3. S ( Q ) s R o  con tour  m a p  in a (100) p lane  f rom the bulk  
s imula t ion results. It  is normal ized  to the Laue m o n o t o n i c  scat- 
tering intensi ty  LL~ue = NCACB(fB--fA) 2 (Warren,  1969). The  
t empera tu re  co r responds  to T = 1.033 T*. 

_-° f .... .......... ? 
~, 0.5 

o 

n=l  

0 .0 

k B T / J  

1 . 0  , , , , . . . .  , , , , , i , i , , i , , , , 

~ 0.5 

0 ( ~  0 . 5  1 . 0  1 .5  2 . 0  2 . 5  3 . 0  

k B T / J  

1 . 0  

o o 

k B T / d  

Fig. 4. O r d e r - p a r a m e t e r  profiles as a funct ion o f  the t e m p e r a t u r e  
and  forJl /J  = (a )  0.5 (b)  1.0 (c) 2.0, and  for  layer  n = 1 (surface)  
to n = 1 5 .  
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Table 2. Short-range-order parameter for different layers at T -  0.874T* 

i Layer 1 Layer 2 Layer  3 Layer  4 Layer  5 Layer  6 Layer  7 

1 -0.068 -0.045 -0.037 -0.023 -0.018 -0.008 -0.004 
2 O- 162 0.094 0.026 0.019 0.011 0.006 0.002 
3 -0.004 -0.009 O.OOn 0-000 0.000 0.000 0.000 
4 0.233 O. 126 0.009 0.006 0.004 0.002 0.000 
5 -0.0009 -0.115 -0.006 -0.005 -0.003 0.000 0.000 
6 O- 174 0.094 0.001 0.000 0.000 0.000 0.000 
7 -0.022 -0.019 0.000 0.000 0.000 0.000 0.000 
8 O. 147 0.076 0.010 0.007 0.002 0.000 0.000 
9 -0.002 
10 0.011 
11 0"002 
12 0"000 

Table 3. Short-range-order parameters of the surface layer ( n = 1) and for different temperatures and interaction 
parameters 

T = 0"874T* T = 1"033 T* 

i Jt/J = 0"5 Jl/J = 1"0 Jt/J = 2"0 Jt/J = 0"5 Jt/J = 1"0 Jl/J = 2"0 

1 -0.142 -0.109 -0.134 -0.129 -0.168 -0.238 
2 0.193 0.131 0-110 0.155 0.191 0.142 
3 0.033 0.010 0.036 0.034 0.039 O. 139 
4 0.030 0-034 0.020 -0-024 0.031 -0.082 
5 -0.055 -0.035 -0.031 -0.048 -0-066 -0.055 
6 -0-020 -0.007 0.019 -0.006 -0.041 -0.054 
7 0-001 -0.002 -0.022 0-031 0-001 -0.035 
8 0.053 0.042 0.032 0.015 -0.007 0.043 
9 0.004 -0.003 0-009 -0.001 0.010 0.056 
10 0-018 0.018 0.021 -0.009 0.019 0.016 
11 0.001 0.000 -0.005 0.001 0.004 0.012 
12 0.004 0.000 0.033 -0.007 -0-003 0.066 

J1/J < 1 results in a depletion of Cu atoms in the 
surface layer. 

In Table 2 we reproduce the average short-range- 
order parameter a = [a l (R,  z) + a2(R, z) + a3(R, z) + 
c~4(R, z)] /4  for each layer from n - 1  to 7 at T--  
0.874T* and for the interaction parameter ratio 
J, /J  = 1.0. Note that only the first few layers exhibit 
SRO parameters which are significantly different from 
the bulk values. 

Table 3 lists the average SRO parameters (as 
defined in Table 2) of the surface layer (n = 1) and 

I00 , , ~ , 

90 / 

11 , 

< 80 ' ~ t  
"6 

~ ~ - I ~ , , / - . ~ - : . - - . . . - - - . - - - , -  . . . . . . . . . . . . . . . . .  ....- 

vo "- i,,~, 
u 

6 0  I , I i I i I , I i I I I 
2 4 6 8 I0  12 14 

Fig. 5. Concent ra t ion  profiles for Cu atoms as a funct ion of  layer 
index n. Squares represent T = l . 0 3 3 T * ,  circles T = 0 . 9 4 7 T * .  
The dashed lines are for Jl/J = 0.5, solid lines for Jl/J = 1.0, 
and dotted lines for J~/J = 2.0. 

for different temperatures and interaction parameters. 
Here it becomes obvious that while the SRO par- 
ameters are roughly the same at the surface and in 
the bulk for T > T*, for T < T* they are considerably 
larger at the surface than in the bulk. 

2. Surface X-ray scattering for Cu3Au (111) ordered 
alloys 

(a) Long-range order. Fig. 6 shows the calcu- 
lated S(Q) due to the long-range order assuming a 

, , , , ~ , , - - - ' r  -I r -  - r -  T r , 

~ E :J 

;i ., 

. . . .  -:.:..': . . . . . .  ..,..,,, 

0 1.0 2 .0  3 . 0  

<Pf / (Pc 

Fig. 6. S(Q)LR O under  grazing-incident  scattering condit ions.  The 
incident angle ~ is fixed at the critical angle (Pc- The x axis 
represents the exit angle ~f in terms of  ~c. The dashed line is 
for T = 0 . 6 6 1 T * ;  dotted line T - - 0 . 8 7 4 T * ;  solid line T =  
0.947 T*. 
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grazing-incidence scattering geometry as shown in 
Fig. 1. In this plot, the incident angle (p~ is constant 
and chosen to be identical to the critical angle (pc for 
the total external reflection, while the exit angle q~y is 
scanned. For this calculation it is also assumed that 
J ~ / J = l .  For ~Pf<q~c a smooth intensity drop is 
observed with increasing temperature towards T*, 
while for (pf > (Pc the intensity change is much smaller 
over the same temperature range. This difference just 
reflects the fact that, closer to the surface, the order 
parameter decreases more smoothly than deeper in 
the bulk, which is in good qualitative agreement with 
the X-ray work of Dosch et al. (1988). A direct com- 
parison is however not possible since their measure- 
ments were taken on a (100) surface of C u a A u .  

We have also calculated the LRO X-ray intensity 
along the (100) truncation rod for a (111) surface. As 
we described before, 

S ( Q ) L R O = I ( f A - - f n ) Z [ ~ . ,  r/(z)exp [i(q+ x)r,] 
i 

x exp [i( K + rz)zi ]l 2. (17) 

For our case r = (100) and exp (ir=zi) = ( - 1 )  n3. After 
summing over all positions in the xy plane we obtain 

S(Q) ¼(fA 2 2 2 = - f B )  N 1 N 2  

xlX rl(n3)(-1)"3exp(iKn3a3)l 2, (18) 
n 3 

where a3 is the distance between (111) planes, and 
7. = aan 3. For the LRO parameters r l (n3)  w e  used the 
results of the MC simulation shown in Fig. 4. 

The results are shown in Fig. 7. For an ideal infinite 
lattice, the X-ray intensity would appear as Bragg 
spots. But because of the surface and finite penetra- 
tion depth in the z direction, the Bragg peak actually 
extends in the Kz direction and forms a so-called 
truncation rod (Robinson, 1986). This type of diffuse 

1 0 5 _  ' ' ' ' I ~ ' ~  ' ' I ' ' ' ' _ 

~°2- / I  - 

0 I 2 

Kz (~-I) 

Fig. 7. S(Q) for the truncation rod of the 100 peak for different 
temperatures, assuming q~i =q~f =q~ and J l / J  = 1. The intensity 
is normalized to l ( f  A 2 2 2 - f B )  N I N 2  and is plotted as a function 
of r :  = (4¢r/A)sin (p. The solid line is for T =  0-284T*, dashed 
line for T=0.668T*,  dotted line for T--0.812T* and chain- 
dotted line for T--  0-947 T*. 

rod exists for both fundamental and superlattice 
reflections. If the order parameter of successive layers 
is not uniform, the shape of the superlattice truncation 
rod will change accordingly. This presents an alterna- 
tive way to study order-parameter profiles. As can be 
seen from a comparison of the truncation rods in Fig. 
7 plotted for different temperatures, the intensity 
along K is very sensitive to the details of the phase 
transition and the LRO both at the surface and in the 
bulk. 

( b ) Short-range-order diffuse scattering. Figs. 8(a) 
and (b) show a contour map of the SRO diffuse 
scattering expected for grazing-incidence scattering 
conditions and for glancing angles q~i =(Ps--0.75q~c. 
For these angles the X-ray penetration depth is about 

c%1 

lOJ 

t.._._l 

o,I 

[o00] [,To] [2 0] 
(a) 

[ooo] [ To] [2 o] 
(a) 

Fig. 8. S(Q)sRo contour map under glancing-angle conditions with 
q~j = (p/=0-75(pc, for (a) T=0 .874T* and (b) T =  1-033T*. 
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10 layers deep. The temperatures are T=0.874T* 
and 1.033T* in Figs. 8(a) and (b), respectively. For 
T >  T*, there is no significant difference between 
surface and bulk layers and the SRO diffuse scattering 
is mainly from bulk-like layers. However, at T =  
0.874T*, the main contribution to the SRO diffuse 
scattering originates in the surface region which 
extends now over approximately four layers, while 
the SRO parameters of the bulk-like layers are essen- 
tially equal to zero (see Table 1). Therefore, only for 
T < T* can valuable information on the surface SRO 
be gained in a glancing-angle X-ray experiment. 

In Fig. 9 the calculated S(Q) SRO diffuse due to 
scattering is shown for a scan along the exit angle ~: 
while keeping the incident angle fixed at ¢i = ~Pc. 
Below T* (dashed line) the intensity is weak for 
q~y < ~c, increases at q~y = q~c and decreases slowly with 
increasing q~y. This is because, for T < T*, the SRO 

J 

o i 
~f / tP c 

Fig. 9. S(Q)sR o as a function of the exit angle ~pffor fixed incident 
angle q~i = ~0 c and q at the reciprocal point [1, 1, 0]. Solid line is 
for T=0.874T*,  and dotted line for T--1.136T*. 

o I 2 3 4 5 

,P f /% 

Fig. 10. S(Q)LRO (dashed line), SRO intensity (dotted line), and 
S(Q) = S(Q)LRo + S(Q)sR o (solid line) is plotted as a function 
of the exit angle ~0f for fixed incident angle ~Pi = q~c and for q at 
the reciprocal point [1,1, 0]. The temperature is T = 0.947T*. 

diffuse intensity originates mainly in a limited number 
of surface layers, and increasing the exit scattering 
angle does not enhance the scattering intensity much. 
On the other hand, above T* the diffuse intensity is 
higher for all exit angles, because above T* the SRO 
of the bulk makes an important contribution to the 
total diffuse intensity.For large ~: the SRO diffuse 
scattering intensity, corresponding to the Fourier 
transform of the pair correlation in the z direction, 
decreases slowly with increasing ~: due to a loss of 
pair correlation in the z direction. 

Another result from the present MC simulation 
worth mentioning here is that the SRO diffuse scatter- 
ing of C u 3 A u  in a bulk measurement below T* is 
insignificant compared with the intensity due to the 
long-range-order parameters. Therefore, in bulk scat- 
tering experiments the SRO diffuse scattering does 
not need to be considered when measuring LRO 
parameters. However, the situation is different for 
surface scattering experiments. Here the total scatter- 
ing intensity, as shown in Fig. 10, has to be corrected 
for the SRO diffuse intensity in order to obtain proper 
LRO parameter profiles for the surface layers. 

IV. Summary 

We have presented the results of a Monte Carlo 
simulation of an A3B ordering alloy, specifically 
including surface effects. From the simulation short- 
range and long-range-order parameters were extrac- 
ted as a function of the layer beneath the surface and 
for various ratios J1/J of the surface and bulk inter- 
action parameters. 

Glancing-angle surface X-ray scattering is a sensi- 
tive probe for surface phase transitions and order- 
parameter profiles. The present simulation has been 
used to calculate the short-range- and long-range- 
order scattering intensities. Below the critical tem- 
perature the diffuse intensity is mainly due to surface 
effects, while above T* the SRO diffuse scattering 
from the bulk dominates the diffraction signal. In 
addition, scans of the long-range-order part along 
surface truncation rods are shown to be highly sensi- 
tive to the long-range-order parameter profiles, which 
depend crucially on the interaction ratio J1/J. 

X-ray experiments for determining order-par- 
ameter profiles are currently in progress and will be 
reported shortly. 

We have benefited from valuable discussion with 
D. S. Lewart concerning the computer programming. 
The computer simulation was carried out in the 
Materials Research Center for Computation within 
the Materials Research Laboratory. We gratefully 
acknowledge support from the Department of 
Energy, Division of Material Science, under grant 
DOE-AC02-76-ER01198. 
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Abstract 

With the use of modulated plane waves, a new method 
for n-beam dynamical calculations has been estab- 
lished on the basis of a paper by Watanabe, Kikuchi, 
Hira t suka  & Y a m a g u c h i  [ Phys. Status Solidi A (1988), 
109, 119-126].  The  c o m p u t i n g  t ime is r educed  to 
abou t  one-s ix th  o f  wha t  it o r ig ina l ly  was and  a large 
r educ t ion  o f  m e m o r y  is achieved,  n -beam dynamica l  
ca lcu la t ions  o f  a l u m i n i u m ,  coppe r  and  gold  at several  
acce lera t ing  vol tages and  or ien ta t ions  were carr ied  
out  in a comple t e ly  para l le l  m a n n e r  by the present  
me thod ,  the  mult i -s l ice m e t h o d  and  Bethe 's  eigen- 
value m e t h o d  [Fu j iwara  (1959). J. Phys. Soc. Jpn 14, 

0108-7 673/90/020094-05 $03.00 

1513-1524]. The present method turned out to be 
competitive with respect to accuracy and speed in 
comparison with the latter two methods. The new 
method makes n-beam dynamical calculations of 
complex systems and defects possible. 

I. Introduction 

After  di rect- la t t ice  images  f rom a large uni t  cell 
(Allpress,  Sanders  & Wadsley ,  1969; Uyeda ,  
Kobayash i ,  Suito,  H a r a d a  & Watanabe ,  1972; 
Hash imo to ,  Endo ,  Tanj i ,  Ono  & W a t a n a b e ,  1977) 
were observed  by h igh- reso lu t ion  e lec t ron micros-  
copy,  the d e v e l o p m e n t  o f  e lec t ron mic roscopy  m a d e  
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